## **Topics:**

- High Resolution HCals
- Compensation.
- ZEUS DU, details
- 1. All operational high resolution HCals were compensated Quoted energy resolutions:

```
ZEUS ~ 35\%/\surd(E)\oplus 2\% DU/Sc (longitudinal leakages treated with BCAL) WA80 ~ 33\%/\surd(E)\oplus 1.3\% DU/Sc (Zero Degree Calorimeter, full absorption) E864 ~ 34\%/\surd(E)\oplus 3.5\% Pb/ScFi (full absorption) (copied from R.W. SPACAL)
```

- 2. Resolution was dominated by sampling fluctuations.
- 3. Used high sampling fraction or high sampling frequency (Pb).
- 4. Compensation were extensively studied at that time.
- 5. First compensated calorimeter was ZEUS Pb/Sc prototype.
- 6. There are many factors one has to take into account to achieve compensation. At zero order, compensation defined by ratio of thickness of passive and active medium,  $DU/Sc \sim 1$ ,  $Pb/Sc \sim 4$

#### Containment, Longitudinal.

### As shown is a bit misleading...

50 GeV - 
$$L_{95}$$
 = 4.7 $\lambda$  100 GeV -  $L_{95}$  = 5.6 $\lambda$ 

Absorber: 
$$L_{95}(50 \text{ GeV})$$
  $L_{95}(100 \text{ GeV})$  Fe 80 cm 94 cm 99 cm Cu 72 cm 86 cm W 47 cm 56 cm U 52 cm 61 cm



Figure 33.21: Nuclear interaction length  $\lambda_I/\rho$  (circles) and radiation length  $X_0/\rho$  (+'s) in cm for the chemical elements with Z > 20 and  $\lambda_I < 50$  cm.



or, which is better

Weight of Fe EndCap for EIC (R~3.5 m, 0.8 m) will be about 180 metric tonnes



CMS Calorimeter



NIM A257(1987), 488-498



Table 1 Depth of calorimeter necessary to contain 95% of the shower for 90% of the events

| Energy (GeV)        | 10   | 20   | 30   | 40   | 135  | 210   |
|---------------------|------|------|------|------|------|-------|
| Single hadrons jets | 5.1λ | 5.7λ | 6.3λ | 6.7λ | 7 8λ | 8.0 A |
|                     | 4.0λ | 4 3λ | 4.7λ | 4 9λ | 6.4λ | 6.4   |

Control leakages with BAC  $\sim$  100%/ $\checkmark$ (E), N.B. Quoted energy resolution, and overall detector length

| HAC                         |                        |                       |        |  |  |  |
|-----------------------------|------------------------|-----------------------|--------|--|--|--|
| steel                       | 0.4                    | 0.023                 | 0.0024 |  |  |  |
| DU                          | 3.3                    | 1.000                 | 0.0305 |  |  |  |
| steel                       | 0.4                    | 0.023                 | 0.0024 |  |  |  |
| paper                       | 0.2                    |                       | !      |  |  |  |
| scintillator                | 2.6                    | 0.006                 | 0.0033 |  |  |  |
| paper                       | 0.2                    |                       |        |  |  |  |
| contingency                 | 0.9                    |                       |        |  |  |  |
| sum                         | 8.0                    | 1.052                 | 0.0386 |  |  |  |
| effective X <sub>0</sub>    |                        | 0.76 cm               |        |  |  |  |
| effective $\lambda_{int}$   |                        | 20.7 cm               |        |  |  |  |
| effective $R_M$             |                        | 2.00 cm               |        |  |  |  |
| effective critic            | al energy $\epsilon_c$ | 12.3MeV               |        |  |  |  |
| effective average density p |                        | 8.7 g/cm <sup>3</sup> |        |  |  |  |

|                                             | FCAL                 | BCAL  | RCAL                 |
|---------------------------------------------|----------------------|-------|----------------------|
| total depth EMC or HAC0 $[X_0]$             | 25.9                 | 23.8  | 25.9                 |
| total depth EMC or HAC0 [ $\lambda_{int}$ ] | 0.96                 | 0.87  | 0.95                 |
| total depth HAC1 [\(\lambda_{int}\)]        | 3.09                 | 1.96  | 3.09 - 2.32          |
| total depth HAC2 [\(\lambda_{int}\)]        | 3.09 - 2.32 - 1.54   | 1.96  | -                    |
| total # sampling layers                     | 185 - 165 - 145      | 119   | 105 - 85             |
| sum of modules                              | $22 + 2x\frac{1}{2}$ | 32    | $22 + 2x\frac{1}{2}$ |
| sum of 20 x 20 towers                       | 460                  | -     | 452                  |
| sum of 20 x 28 towers                       | -                    | 448   | -                    |
| sum of EMC sections                         | 1056                 | 1696  | 511                  |
| sum of HAC0 sections                        | 196                  | - 1   | 190                  |
| sum of HAC1 sections                        | 460                  | 448   | 452                  |
| sum of HAC2 sections                        | 460                  | 448   | -                    |
| total sum of channels                       | 4344                 | 5184  | 2306                 |
| total DU weight [t]                         | 182.1                | 230   | 104.9                |
| total cladding steel weight [t]             | 17.9                 | 24    | 9.8                  |
| total scintillator weight [t]               | 8.2                  | 10.2  | 4.8                  |
| total weight [t]                            | 240.2                | 310   | 156.6                |
| total # EMC scintillator tiles              | 27456                | 40704 | 13286                |
| total # HAC scintillator tiles              | 75176                | 43904 | 40140                |
| total # DU-plates                           | 4200                 | 3808  | 2440                 |
| total # HAC R580 PM-tubes                   | 2232                 | 5184  | 2306                 |
| total # FEMC XP1911 PM-tubes                | 2112                 |       |                      |

Note:  $\lambda_{abs}$ 20.7 cm vs 24 cm ( $\lambda_{abs}$  for DU is 10.5 cm)

DU/Sc is not self-supporting.

Mechanics add a lot of dead areas.

- Complicated mechanics.
- Strong back.
- Gaps.

STAR FCS (20mm Fe, 3.4 mm gap)  $\lambda_{abs} \sim 20.16$  cm Self-supporting structure. Very efficient use of space.

### DU absorber, some details.

DU plates production. (185 layers in tower)

- Bare DU plates produced by MSC, Oak Ridge
- DU plates required electron beam welding at Chalk River Lab, Ontario, Canada
- Complete lamination laser welding SS (or SS + magnetic foils)

#### DU plate handling

- Laminated DU plates has surface activity  $\sim$  50  $\mu$ Sv/h (at 1 m  $\sim$  5  $\mu$ Sv/h).
- Stacking assembly requires robot (stacking at NIKHEF)

Exclusive production methods are expensive.

Compare to Fe absorber plates.

#### **Production**

- Machining at any shop which has CNC.
- Plating with Zn, corrosion protection.

#### Handling

· Don't need robots, we have undergrads.

## Some other things:

Mechanical structure is quite complicated because structure is not self-supporting. As many other calorimeters (CDF, STAR, Alice Shashlyk etc. structure is hold by friction, i.e. stack under compression)

Requires lots of different parts, made with high precision. Examples:

- Tungsten carbide spacers required to keep stack stable under tension with minimal dead space (allocated to spacers) for ZEUS.
- STAR BEMC, 100% QA x-ray defects on laser welded compression straps.

Assembly of modules will require a team of highly trained technicians, i.e. has to be made in one of the National Lab.

Finally, often overlooked, one has to think about generating 200t of radioactive waste ...

# Energy range, Rates, and Compensation



## Jets at EIC and Compensation

#### Jets are excellent proxies for quark kinematics



Brian P., Miguel A. et. al.



- Compensation is energy dependent.
   Does not work below 10 GeV.
- I don't know of any solution for that.

Number of Neutrons generated by pions. U ~ 60/GeV Pb ~ 20/GeV Fe\* ~ 10/GeV (\* somewhat guessed)

Jet Radius for EIC ~1

Degradation of SiPMs is a concern.

Cost of DU calorimeter. I don't know, guess many times more than Fe/Sc with parameters from handbook. For high resolution HCal one need lot of space and high sampling fraction. As an illustration.



Constant term decreasing slowly with increased depth. log dependence.



Shashlyk + 36 layers Fe/Sc (20mm/3mm) , Energy Resolution



Stochastic term decreasing slowly with increased sampling fraction. (10% improvement vs 30% increase in cost)





Trade off. Cheap tail catcher gives same results as improved sampling fraction at element energies, But for the cost of 'efficiency',  $\sim 90\%$  at 6 GeV drops to 50 % at 64 GeV

#### Final remarks:

- High resolution HCals are challenging.
- Need both space and money.
- One can think of trade offs like efficiency vs resolution.
- For EIC central detector compensation is not a panacea. For ZDC it is.
- Due to superior trackers, role of calorimeters (HCALs) is different it
  was ~30 years ago, i.e. we are not talking about CALOR Jets (ZEUS, DO
  etc.), it will be PFA... unless one require 'complimentarity', i.e. PFA vs
  CALOR Jets.